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SUMMARY 

Camber and thickness distributions and a hinge point, are chosen for thin airfoils, to maximise the de-stabil- 
ising moment about that hinge point, in steady reversed flow. This optimisation is carried out subject to the 
constraints that the airfoil be in equilibrium for steady forward flow, and that the mean square camber be 
held fixed. 

1. Introduction 

A passive valve in the form of  a thin leaflet, that almost aligns itself with the flow when open, 

has obvious advantages compared to (say) a ball in a cage. In the latter case, the ball remains as 

a major diverter o f  flow streamlines in the fully-open configuration. Such diversions are almost 
invariably undesirable. 

It is not  therefore surprising that nature has evolved leaflet-type valves for use in physiological 

systems, such as the cardio-vascular. Engineering design of  passive valves, on the other hand, has 

tended to prefer ball types, mainly for reasons o f  simplicity. Even when man needed to replace 

nature's design by one of  his own, as in prosthetic heart-valve replacements [1], the ball type 
was generally preferred, at first. 

This preference was in part because o f  hinging difficulties, in part because of  an apparent 

need for flexibility in the natural valve, and in part because o f  a need to keep the complete mech- 

anism well washed. However, none of  these difficulties is major, and some of  the most success- 

ful recent prosthetic heart valve designs have involved rigid hinged cambered discs or leaflets [2]. 

It is immediately clear that some form of  effective camber is desirable, if such a leaflet is to 

have the ability to close rapidly, while providing minimum obstruction to forward flow. That is, 

a rigid flat plate, fully aligned with a uniform stream, is of  little or no use as a valve, since it will 

not  have any immediate incentive to begin to re-align itself perpendicular to the stream, if the 
stream is reversed. 

Admittedly, providing the plate is hinged at a point such that the forward-flow configuration 

is stable (ahead of  quarter-chord, for a two-dimensional flow), the reverse flow will be unstable, 

and any small perturbation will cause the plate to depart from alignment. However, the designer 

can hardly rely on this instability mechanism, which is not  certain as to direction, and would 
presumably be slow to begin. 

More generally, the leaflet must, in the equilibrium fully-open configuration, present some 
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obstruction to a reversed flow, whether or not  that flow is uniform. For example, the natural 
aortic valve leaflet is almost planar when fully open, but [3] the presence of  "sinuses', (i.e. small 
pockets in the aortic wall) guarantees that  the reversed flow is locally non-uniform. This local 
flow non-uniformity is equivalent to a camber of  the leaflet,in an otherwise-uniform undisturbed 

flow. 
I f  our task is to design a rigid leaflet, we can easily introduce camber in the leaflet itself. 

Hence, in this paper, the task set is to choose an appropriate shape, in terms of  camber and thick- 
ness, for the rigid leaflet, assuming that both  the forward and reversed flows would be uniform 
in the absence o f  the leaflet. 

This problem is treated as one in classical inviscid incompressible aerodynamics. That is, we 
assume that the Reynolds number of  the flow is high enough that viscosity can be ignored, ex- 

cept in the sense that it determines, via a Kutta condition, the circulation around the leaflet. For 
the present, we also assume that the flow is two-dimensional; that  is, that  the aspect ratio of  the 
leaflet is large. Although this is not  really a good approximation for applications such as to the 
aortic valve, the extension to arbitrary aspect ratio, or to an axisymmetric flow, is straightfor- 

ward in principle. 
We also assume that  both the forward and reversed flows are steady. This is not unreason- 

able for the forward flow, which any successful design ensure is smooth and steady. However, 
in the application to the aortic valve, an important  feature [3] neglected by the assumption of  
steadiness is a tendency of  the natural valve to commence closing as the forward decelerates. 
Although this feature is not included in the present theory [but see note on p. 57] ,  it seems 
intuitively reasonable that designs optimised for steady flow will also have favourable 'antici- 
patory '  properties, in decelerating forward flow. 

For the reversed flow, even though our aim is to induce motion of  the leaflet, we assume 
that  sufficient time elapses from the commencement  of  reversed flow, for the required steady 
circulation to develop. This steady reversed flow (about the leaflet in its equilibrium forward- 
flow configuration) will exert unbalanced forces and moments  on the leaflet, causing it to move, 
so creating flow unsteadiness and ultimately closing off  the reversed flow. In spite o f  this 'slowed- 
down'  description o f  events, we are in fact anxious to design a leaflet such that closure occurs 
as rapidly as possible. 

The arguments advanced above in favour o f  camber clearly extend to the conclusion that  
maximum rate o f  closure will occur for a very highly cambered leaflet. Since this would defeat 
the purpose of  the exercise, the leaflet being intended to be a small perturber of  the forward 
flow, some form of  constraint on camber is required, and we use a constraint on its mean-square 
value. In view of  this limitation, the leaflet can be considered as a thin airfoil, and the classical 

theory of  such airfoils [4] can be exploited. 
The simplest problem of  this sort to analyse, is that for an airfoil alone in an unbounded uni- 

form stream. This analysis is presented in See. 2. The result is very simple, indicating that the 
optimal 'valve' is of  zero thickness, has a camber that  is large near the leading edge of  the for- 
ward flow, reducing to zero at the trailing edge, and is hinged at a point 9% of  chord from the 

leading edge. 
Clearly, such a design is not much use as a valve, since it cannot block of f  the flow complete- 

ly, when perpendicular to it. This situation can be remedied by introducing boundaries to the 
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undisturbed flow. The analysis is then repeated for the case when there is just one such boundary, 
an infinite plane wall, parallel to the undisturbed stream. 

Now an analytic solution is not possible, and we must resort to numerical techniques. The 
problem of  an airfoil moving:in the neighbourhood of  a plane wall has been solved numerically 
in other contexts (eg. [5]), and we need merely adapt computer programs already developed 
for other purposes. The results show that the optimal leaflet not only is cambered, but also pos- 
sesses thickness, and we find the optimal distribution of  both these quantities, and the corre- 
sponding optimal hinge point. 

Although this configuration is, by itself, still incapable of functioning as a true valve, such 
a valve can be constructed by incorporating a second boundary wall, or by combining two such 
leaflets symmetrically. In principle, it is necessary to analyse the combined flow; however, the 
optimal leaflet, when fully open, is sufficiently close to the original wall, to make it reasonable 
to assume that the second wall or leaflet has little effect. A suitable design for such a valve is 
provided, the hinge point being at 21% of  chord from the leading edge of the forward flow. 

2. Unbounded fluid 

If a thin airfoil is alone in an unbounded fluid, its thickness does not influence the lift distribu- 
tion on it. Hence, from the point of  view of  maximisation of  rate of closure, leaflet thickness is 
irrelevant, and will be taken as zero in the present section. That is, the leaflet is taken to have 
equation 

y=f(x) ,  I x l < L  (2.1) 

where 2 ~ is the chord. The derivative of  the function f(x) includes both of what are normally 
described as camber and angle-of-attack contributions, and is taken as a small quantity. 

If this thin airfoil is placed in a uniform stream U in the x-direction, of fluid of density p, 
the pressure jump pUT(x) across the foil satisfies the integral equation ([4], p. 170) 

lrl f ; ,  ~(~--) d~=2Uf(x). (2.2) 

According to the Kutta condition, the pressure jump must vanish at the trailing edge, namely 
x = +£ ff U >  0, or at x = - ~  if U <  0. The resulting explicit solution of  (2.2) is then ( U <  > 0) 

V V ; d +. 

The corresponding moment about x = Xo is 

(2.3) 

M ± = -- pU f~_~ (x - Xo)'Y±(x)dx (2.4) 

, ff-Ud_+ x 
= 2pu2 f;fz [~ +_ (Xo - X)] V ~ x f'(x)dx. (2.5) 
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Our task is to choose the shape function f'(x) and hinge position Xo, so as to maximise M-, 
while M + = 0. That is, we maximise the overturning moment  about xo in reversed flow, given 

that the configuration is originally in equilibrium for forward flow. At the same time, we must 
place a bound on the size o f f ( x ) ,  since it is immediately clear that M -  can be increased with- 

out bound by let t ingfl  ~ oo. 

For that purpose, we use the quantity 

f_fz f (x) 2dx. (2.6) E = -~ 

This can either be interpreted as the 'mean square camber',  or as an approximation to the excess 

o f  arc length over chord, In any case, reducing E tends to reduce the extent to which the leaflet 

disturbs the forward flow. 
Now the task o f  maximising M -  subject to the constraint that E is fixed, is an elementary 

one in the calculus o f  variations [6], with the solution 

f'(x) = X ( ~  - X o  + x 
x 

(2.7) 

for some Lagrange multiplier X. The resulting value o f M  + is 

M + = 4pU2X,~ [-~£ 2 - x ~ ]  (2.8) 

which vanishes if 

2 = ] ~2 (2.9) x0 

e.g. at x0 = - 0 .8165L This particular choice o f x o  is stable for the forward flow, since it is for- 

ward of  the centre o f  pressure, x = --~ ~. The shape o f  the optimum leaflet is shown in Figure 1, 

as the curve h = oo. 
The corresponding linear-theory values o f  M -  and E are in fact logarithmically positive in- 

finite. However, this singularity does not invalidate the variational procedure, the choices (2.7) 
and (2.9) being preferable over all other camber and hinge positions, irrespective o f  convergence 

of  the resulting integrals. Obviously we are not unhappy about a large positive value for M - ,  

but we had hoped to keep E bounded. 
Inclusion of  non-linear effects near the highly cambered leading edge x = - £ ,  provides a rem- 

edy for this difficulty. It is possible to see how this will occur, even using the linearized solution, 
if we exclude a small neighbourhood of  x = - £  from the integrals in (2.5) and (2.6). But then 
the integrals for M -  and E are proportional to each other, and we have 

2 p U  2 
M -  - E. (2.10) 

X 

That is, as we reduce the scale ~. o f  the camber function f ( x ) ,  keeping E fixed, M -  will become 

larger and larger, as required. 
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Figure 1. Optimal valve shapes. Arrows show 
optimal hinge points. 

3. Leaf le t  near a plane wall 

If a thin airfoil is placed at y = h in a steady flow near a wall y = 0, the flow is the same as if 

there was a mirror-image foil a t y  = - h .  The local flow, as seen by the original foil, is now influ- 
enced by the image foil, and in particular, an additional effective camber is induced by that im- 

age's thickness. Hence, we can no longer treat the leaflet as one of  zero thickness. 

Suppose, therefore, that the foil has upper and lower surfaces. 

y=h +LAx), Ixl<~, (3.1) 

respectively. Then, in a stream U, the perturbation velocity potential ¢ satisfies the linearized 
boundary condition ([4], p. 165) 

+ r 
~by(x, h _ 0) = Uf±(x), Ix I <  ~. (3.2) 

The velocity potential q~ must vanish at infinity, satisfy Laplace's equation everywhere, and ¢y = 0 
on y = 0. A suitable representation of  such a potential is (c.f. [7]) 

¢(x,y)  = 2~  [q(~)G(x - ~, y)  + 3'(~)H(x - ~, y)] d~ (3.3) 
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where 

1 
G(x ,y )= 

and 

log [(x 2 + (y  --h)2)(x 2 + (y  +h)2)] (3.4) 

--1 

x - ~ / = 2U(fl'(x) + f ~ ( X ) )  (x - g)2 + 4h  ~ l 

defines the mean surface of the leaflet, i.e. f ' (x)  is its camber, and 

2 h / - ~  g'(~)d~ 
f t ( x ) = -  -~-J-Q ( x - - ~ - ~ + 4 h  2 

is the additional induced camber due to image thickness. 
Equation (3.9) is the generalization of  (2.2). In fact, as h ~ o0, f t (x)  ~ 0; i.e. the effect of 

thickness vanishes in this limit, as expected. At the same time, the kernel of the integral equation 
(3.9) reduces to that of  (2.2). However, (3.9) possesses no explicit analytic solution like (2.3), 
and we must resort to numerical methods. 

(3.9) 

(3.10) 

(3.11) 

where 

1 f(x) = ~ be+(x) +f_(x)] 

1 y - h  1 y + h  
H(x , y )  = ~ -  arctan - -  - -  a r c t a n -  (3.5) 

x 2rr x 

The expression (3.3) is just a distribution of sources of strength q, and vortices of strength 7, 
together with their images in y = 0. 

Now, upon application of the boundary conditions (3.2) asy ~ h + 0, we find 

E J h 52 q ( ~ ) d ~  1 ~ 1 x - +_½q(x)+-~f"__~ (x_-~-~-+4h2 + '~nf- 'Q d~7(~) x - ~  ( x - / j ) 2 + 4 h  2 

= Uf+(x). (3.6) 

That is, the source strength q(x) is determined explicitly as 

q(x) = 2 Ug'(x) (3.7) 

where 

2g(x) = f+(x) - f _ ( x )  (3.8) 

is the thickness of the leaflet. 
On the other hand, the vortex strength 7(x) satisfies the integral equation 
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The generalization of the mean camber constraint (2.6) is 

E=-~ f ~  [f'+(x) 2 + f "  (x)2]dx (3.12) 

=f_'~ [f'(x) 2 +g'(x)2]dx. (3.13) 

This measures (according to (3.12)) the excess arc length of both top and bottom surfaces, or, 
according to (3.13), the mean square of  both camber and thickness. Again, a reduction in E, 
implies a reduction in forward flow impediment. 

The problem of maximising M -  subject to fixed E, now has two independent functions f 
and g '  to vary, and is not quite as trivial an exercise in the calculus of variations as that in Sec. 2. 
In addition, the lack of an explicit expression such as (2.5) for the moment M - ,  in terms of the 
varying functions, makes our task difficult. The result of enforcing stationarity o f E  + AM- is a 
set of integral relations of the form 

and 

x - ~ { = X(x - Xo) 

- " i  

A 
(3.14) 

g'(x) = 2h ~ f '(~) (3.15) 
- --~-f_' d~ ( x - ~ ) 2  +4h  2 .  

Equation (3.14) must be solved subject to f '(£) = 0. It should be noted that (2.7) is the analytic 
solution of (2.2), subject to this condition. 

Once f ( x )  is determined by solving (3.14), the thickness slope g'(x) follows from (3.15), 
and hence the induced camber ~/(x) from (3.11). Finally, we must solve (3.9) for 3' = 7+(x), 
satisfying 7(£) = 0, and choose the hinge point Xo so that M ÷ = 0. 

As well as the limit h ~ 0% in which the theory of the present section reduces to that of Sec. 
2, it is also possible to obtain analytic results as h ~ 0, i.e. for very small gaps between leaflet 
and wail. In the first place, as h ~ 0, equation (3.15) indicates that 

g'(x) ~ - f'(x). (3.16) 

That is, f'+(x) ~ 0, and the upper surface of the leaflet becomes plane. This allows the flow 
through the small gap to control the dynamics. At the same time, (3.14) yields 

f" (x)  = -  ~ ( x -  Xo) (3.17) 

which may be integrated to give a cubic expression for the mean surface, and hence for the low- 
2 1 2 er surface f_(x) .  The resulting optimum hinge point has x 0 = g£ , i.e. Xo ~ - 0.45£. These 

small - h  limiting results can also be obtained directly, using the small-gap theory of airfoils in 
ground effect (e.g. [8]). 
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4 .  N u m e r i c a l  s o l u t i o n  

Our first need is for a computational procedure to solve the integral equation 

f/~2 d~ 'y(~)K(x-  ~)= R(x) 

where 

1 x 
K(x) = 

x x 2 + 4h 2 ' 

(4.1) 

(4.2) 

for various right-hand-side functions R(x), subject to 7(£) = 0. A variety of  techniques were dis- 

cussed in [9], and Oertel's method [10] was found to work well in the present case. The result- 

ing algorithm gives an output  set o f  N values o f  3'(x), for any set o f  N input values o f  R(x), after 
inversion o f  a suitable N x Nmatr ix .  The errors tend to zero at least as fast a s N  -2 , and are less 

1 than 5% forN~> 30. 

For example, if R(x) is a constant, the output  is the pressure distribution on a rigid fiat plate 
at a constant angle of  attack, at a distance h from a plane wall. From this pressure distribution, 
we may compute the centre of  pressure for forward flow, shown as the dashed line in Figure 2. 
Similar results have been obtained by Hess [5] and others. This quantity is of  importance in the 
present case, since any hinge point must be forward o f  the centre o f  pressure, to guarantee sta- 
bility of  the forward flow. 

In order to solve (3.14) for the optimum leaflet shape, we first solve two canonical problems, 

for 7 = ~ with R = 1, and for 7 = f2' with R = x. Thus, the true camber is a linear combination 

of  the form 

y ( x )  = x (x)  - ) , 0 4  ( x ) ]  (4.3) 

-0.3 

-0.4 

- 0 . 5  

x /~  

-0 .6  

- 0 . 7  

- 0 . 8  

Figure 2. 
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"~' ~ ~/PRESSURE 
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J HIN6E 

I I I 
0.5 1.0 1.5 2.0 

hiP. 

Variation in centre of pressure and optimal hinge point x o with distance h from wall. 
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However, the hinge point Xo is so far not known, and we must proceed to satisfy forward-flow 
equilibrium, in order to determine Xo. 

Straightforward numerical approximation of (3.15) yields the thickness distribution g ' ,  as 
a similar linear combination, and repeating this process on the identical integral (3.11) yields 
the induced camber if/. Finally, the integral equation (3.9) is of  the form (4.1), with R as a 
linear expression in Xo and can be solved to yield 

7(x) = v2 (x) + Xo'r,  (x). (4.4) 

That is, "h (x) is the result of carrying out the above sequence of computations starting with the 

original R = 1, and 3'2 (x) starting with R = x. Note that 4 separate inversions of  the integral 
equation (4.1) are needed to complete this process. 

The moment about Xo can now be expressed (using (2.4)) as a quadratic expression in Xo, of 
the form 

M + =M22 - (MI2 +Mul)Xo +MI1 X2 (4.5) 

where Mn and M n  are respectively the force and moment corresponding to R = 1, and 3/21 
and M22 those corresponding to R = x. However, a fundamental symmetry theorem (c.f. [4], 
p. 296) guarantees that 

M12 +M21 = 0. (4.6) 

That is, M + = 0 if 

2 
Xo = - M22/Mll. (4.7) 

The numerical results do not obey (4.6) exactly for all N, but converge to it rapidly a s N ~  c o .  

The coefficients M11 and M22 are positive and negative respectively, and the negative solution 
of the quadratic equation (4.5) converges rapidly to the results shown as the solid line on Fig- 
ure 2. Since this line lies beneath the dashed line for all h, the resulting predicted hinge point 
Xo is stable for the forward flow. 

Figure 1 shows a corresponding set of  design shapes for the leaflet. The maximum departure 

from y = 0 is arbitrary, and has been scaled to unity. Note how the thickness tends to zero as 
h -~ ~o, relative to this unit maximum camber, and the results agree with (2.7). At the other end 
of the scale, as h ~ 0, the upper surface becomes fiat, as predicted by (3.16), and the optimum 
leaflet has comparable thickness and camber. 

5. A design valve 

No attempt has so far been made to predict a 'best'  value of  the wall clearance h. The optimisa- 
tion was carried out at fixed h, and all we have done is to Find the best leaflet at that h, by max- 
imising the moment M - .  It is important to note that M -  is n o t  an appropriate objective func- 
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tion for a global optimisation, in which h is allowed to vary. In that case, we must also pay at- 

tention to the added moment of  inertia of  the valve. 
That is, the real objective is to maximise the initial angular acceleration of the leaflet about 

Xo. There is little point in producing a large value of  M - ,  if at the same time one creates a situa- 
tion in which the valve is very reluctant to move, in spite of  that moment. However, for thin 
leaflets, the moment of  inertia is independent of  camber and thickness, being the same as that 
of  a fiat plate at a uniform distance h from the wall. Thus, for a given h, the moment of  inertia 

is constant, and optimisation proceeds by maximising the moment M - .  
It should be noted in passing, however, that the moment of  inertia increases dramatically, 

as h decreases. That is, when we place a nearly-flat rigid leaflet close to a wall, it must become 
very reluctant to rotate itself away from that wall, due to the large inertia of  the fluid that has 
to rush into the increasing gap. Hence, it seems likely that presence of a wall is a negative factor 
in this type of design, and that the best valve will have the largest h possible. 

However, as indicated in See. 3, a finite value o f h  seems essential, if the valve is actually to 
be able to close. In fact, complete closure of  the flow near the wall in the present single-wall 

geometry demands that 

h = £ +Xo. (5.1) 

I f  the predicted optimum Xo is used, (5.1) demands h = 0.43 ~ and Xo = -0 .57£.  
The design with these parameters is shown in Figure 3. This Figure shows a second wall at 

y = £, and a stop to enable the valve to remain closed. The forward flow in this channel should 
really be analysed afresh, since, in principle, the new wall at y = £ will change flow conditions 
from those assumed in the analysis of  See. 3, which assumes that there is only one wall, at y = 0 .  
However, the new wall is sufficiently far from the leaflet in its fully-open position, to sugges t 
that any corrections will be small. A symmetrical two-leaflet design can also be constructed by 

mirror reflection of Figure 3. 

/ / / / / / / / / / / /  ~ / / / / / / / / / / / / / / / / / / / / /  

I 
I I  

/ / / , , - / / -  / . , - / / - / - / / [ / ~ / / , , - / / ~ - / / / / f  f / / / / / / / / / / f / / / / / /  

Figure 3. Example of a valve design. The solid outline is fully open, the dashed outline is fully closed. 
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